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Abstract
When survivors of technology-facilitated abuse (TFA) suspect some-
one has accessed their online accounts, they often rely on built-in
account security interfaces (ASIs), such as trusted device lists within
settings, to assess account compromise. However, these interfaces
typically offer limited or ambiguous details about past account ac-
cesses and security-critical events. Under right of access provisions
in data protection laws, users can request structured exports of their
personal data from online services. In this study, we explorewhether
and how data exports can supplement ASIs to support compromise
investigations, particularly in interpersonal threat contexts. We sim-
ulated four types of account compromise attacks across six popular
platforms, analyzing the resulting data exports and ASIs. Our find-
ings show that data exports consistently containmore granular login
histories and richer device/network identifiers than interfaces. Some
even link security-related actions (e.g., password changes) and other
post-authentication activity to specific devices, offering forensic
value for identifying compromise. We discuss usability and other
practical challenges of using data exports during TFA interventions.

CCS Concepts
• Security and privacy→Human and societal aspects of se-
curity and privacy; •Applied computing→ Investigation tech-
niques.
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1 Introduction
Asmore aspects of our personal and professional lives shift online,
our physical and digital safety has become increasingly dependent
on the security of our online accounts. This risk is particularly pro-
nounced for individuals experiencing technology-facilitated abuse
(TFA)—a spectrumofharmful behaviors suchasharassment, surveil-
lance, and coercive control through digital technologies, often car-
ried out by someone known to the survivor (victim) [33, 59, 75].
Most abusers (adversaries) in TFA contexts use technologically sim-
ple yet effective methods to gain authenticated access to survivors’
accounts, weaponizing their knowledge of survivors’ private in-
formation (e.g., SSNs, passwords) and physical access to their de-
vices [31–33, 38, 48, 72, 79]. After initial authentication, abusersmay
exploit unauthorized, privileged account access bymodifying critical
settings, enabling location sharing, and intercepting messages.

When a survivor suspects their accounts might be compromised,
they may visit account security interfaces (ASIs) [21] provided by
online services on their mobile apps and websites. These interfaces
inform users about the state of their account’s security by centraliz-
ing key security-related information (SRI), including active sessions,
recent logins, and password changes. Although ASIs are important
sources of information for survivors, Daffalla et al. [21] identified
serious limitations with respect to the reliability and completeness
of the information displayed within them. Many ASIs provide only
coarse-grained device identifiers (e.g., “iPhone”), which can make
it difficult for survivors to differentiate between suspicious and be-
nign devices. Others show only currently active sessions instead of
historical logins, and security logs may be time-limited [21].

In this study, we explore an alternative approach to investigat-
ing account compromise: utilizing data exports obtained from online
services. Data protection laws such as the GDPR in the European
Union [27], CCPA in California, USA [11, 12], and DPDPA in In-
dia [40] grant individuals the right to obtain copies of their personal
data from companies and organizations [40, 42, 60]. Most large, on-
line services have developed tools for users to request and download
archives of their own data, which we will refer to as data exports.
While laws and platforms vary inwhat they consider to be “personal”
data, existing research [61, 70] and our preliminary analysis suggest
that data exports contain useful SRI for identifying and explaining in-
stances of account compromise.However, the syntactic and semantic
structures of data exports are often not well-documented by the ser-
vices that provide them [9, 82], making it hard to extract all relevant
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user information. Moreover, no prior work has studied whether the
SRI in data exports is more comprehensive than what ASIs provide.
Therefore, we consider the following three research questions:
RQ1 What types of informationpresent in data exports are relevant to

investigating account compromise by an interpersonal abuser?
RQ2 How does security-related information (SRI) within data ex-

ports compare with information presented in account security
interfaces?

RQ3 Towhat extent canwemapdata exports to abuser actions during
account compromise attacks?

We examined data exports from six popular online services: two
services provided by operating system vendors (Apple/iCloud and
Google) and four social media &messaging services (Facebook, In-
stagram, Snapchat, and Discord). Because data exports contain such
sensitive information [6, 35, 64], we created researcher-controlled
accounts and simulated both benign and adversarial usage for over
three months (see Figure 1). We simulated four types of attacks re-
quiring authenticated access to the survivor’s accounts: (1) account
surveillance, (2) locationmonitoring, (3) impersonation, and (4) lock-
out & control. We downloaded the data exports twice during the
study period and designed a unified data model and parser for files
from all six services.

In Section 4, we developed a label system for data exports that
characterizes both security-related information (authentication and
security-critical settings) and additional user activity (e.g., messages,
interactions). In Section 5, we conducted focused walkthroughs of
ASIs fromour six services to compare their provided SRIwith the SRI
in data exports. Finally, in Section 6, we mapped simulated attack
steps to specific files and components within data exports.

Thorough account compromise investigations are essential for
TFA survivors — not only to understand how an attack occurred, but
also to plan for their future safety. Our study demonstrates that data
exports may be a valuable resource in such investigations. We urge
the research community and industry partners to explore ways to
operationalize data export analysis by developing tools that support
automated detection and reconstruction of attacks. We provide sup-
plementary materials (parser code & documentation) on GitHub.1
Our dataset of data exports is available on request via Zenodo.2

Contribution. The main contributions are the following:
• Characterization of security-related information in data exports.

We locate SRI, including authentication and security-critical set-
tings changes, that can be used to identify potential account com-
promise. Additionally, we highlight other valuable activity data
for this purpose, such as messages, searches, and click analytics.

• Comparison with ASIs.We show that data exports provide strictly
more SRI than ASIs for all services. Exports provide more fine-
grained information about device identifiers; more complete
records of past logins and security-critical settings changes; and
longer log histories compared to ASIs.

• Identification of specific abuser actions. We successfully recon-
struct login sequences from our attack simulations using data
exports from all platforms studied. In addition, we demonstrate

1https://github.com/WISPR-lab/data-exports-tfa. We also provide parser utilities as
supplementalmaterials ina full versionof thispaperavailableon the1st author’swebsite.
2https://doi.org/10.5281/zenodo.17058860

our ability to use session-levelmetadata fromDiscord andGoogle
to map post-authentication activity on those apps, which is im-
possible using ASIs alone.

2 Background
In this section, we first survey work on technology-facilitated abuse
mechanisms and interventions, as well as user experiences with
security interfaces. Then, we review the legal origins of data exports,
their general features, and recent works that use them as a research
medium.

2.1 Technology-Facilitated Abuse
Technology-facilitated abuse (often referred to as online abuse [77])
describes deliberate misuse of technology to “stalk, coerce, intim-
idate, threaten or otherwise harm” another individual [8]. A 2024
study among U.S. college students found that as many as 70% had
experienced some forms of TFA, including stalking, online threats,
non-consensual intimate imagery, and account takeover [36].

TFA has been studied widely within the context of intimate part-
nerviolence (IPV) [8, 16, 33, 37, 72, 86].Researchershave investigated
abuse mechanisms through interviews [8, 32, 33], crawling web con-
tent to identify spyware and spy devices [4, 5, 14, 16, 75, 79], and
evaluating “anti-security” and surveillance tactics shared on TikTok
and Reddit [79, 83]. Thomas et al. [77] developed a taxonomy of TFA-
related attacks based on criteria of audience, medium, and abuser
capability. Our study focuses on three categories of attacks identified
by Thomas et al. [77] that involve different degrees of privileged
access to the survivor’s online accounts: impersonation (“hijacked
communication”), surveillance, and lockout & control.

Interventions for TFA have centered around the clinical computer
security model introduced by Havron et al. [38], which outlines a
framework for providing structured, individualized, and trauma-
informed help to survivors of TFA within the IPV context [31, 80].
Three such tech clinics exist in the U.S. [15, 20, 76], providing sur-
vivors, or clients, with one-on-one technical support from trained
technology consultants. Consultants help clients identify possible
spyware and account compromise, proactively enable security fea-
tures, and assist in safety planning alongside their case manager or
advocate [38]. Much of the consultant’s work involves using struc-
tured protocols [78] to inspect account security settings and helping
survivors interpret the presented information.

2.2 Account Security Interfaces
The term account security interface (ASI), introduced byDaffalla et al.
[21], refers to application user interfaces that enable users to view
and modify the security status of their accounts, typically within
settings. Examples include theWhere you’re logged in interface in
Meta’s Account Center [58], which lists devices associated with
active sessions. These interfaces are incredibly valuable in clinical
computer security consultations when survivors and consultants
work together to detect suspicious account accesses [31, 38]. The
Clinic to End Tech Abuse (CETA) additionally provides guides for
navigating ASIs in common applications [78].

AlthoughASIs such as privacy and security checkups help people
feel safer online [66], they can be both difficult to locate and to inter-
pret [13, 21, 34]. Gallardo et al. [34] found that just twoout of 18 users

https://github.com/WISPR-lab/data-exports-tfa
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could find the trusted device list in Apple’s SettingsASIwithout help.
Daffalla et al. [21] observed that survivors and consultants rely on
incomplete details in ASIs to determine if an attack has occurred. If
identifiers associatedwitha logged-indevice (i.e., devicemodel, oper-
ating system) are ambiguous, survivors find it difficult to determine
whether it belongs to them or seems malicious. Multiple sessions on
a single device may appear as distinct “devices,” potentially causing
confusion or alarm. SomeASIs only display currently active sessions
rather than historical login actions, allowing an abuser to hide previ-
ous accessesmade to the account.Historical logsmaybe time-limited
or include only logins deemed unknown or risky by the applica-
tion[21],which fail toconsider that theabuserandsurvivormayhave
previously shared devices or a home network in interpersonal threat
models [32, 33, 72]. In our study, we examine the extent to which
data exports might be able to address several of these limitations.

2.3 Data Exports & Right of Access
Data protection laws such as Brazil’s LGPD [60], India’s DPDPA [40],
and the European Union’s GDPR [27] codify right of access, which
allows users to request their personal data from organizations that
collect or process it. The LGPD and GDPR also establish the right
to portability, which mandates that organizations provide data in
machine-readable formats so that users may transfer it to other
services [27, 60]. The CCPA and CPRA (California, USA) contain
a similar provision, right to know [11, 12]. Services have largely
automated data requests through web forms and in-app pages avail-
able to logged-in users [62]. Facebook’s request page, for example,
is available at https://www.facebook.com/dyi [28]. The resulting
data export is typically a ZIP archive containing structured or semi-
structured user data, such as login history, message and browsing
activity, and advertisements [9, 62]. Data exports may also be re-
ferred to as Subject Access Request Packages (SARPs) [47] or data
takeouts [3]. Services often make right of access request features
available beyond regions with explicit legal requirements, likely due
to the difficulty of verifying users’ native jurisdictions [42].

Compliance, security, & usability. Early research following the
2018 GDPR [27] observed high non-response rates [45, 62, 81, 85],
deceptive patterns in request interfaces [52, 62], noncompliancewith
legal machine-readability requirements [45, 62, 85], and vulnerabil-
ities during authentication [10, 54, 55]. More recent work suggests
that the state of regulatory compliance and security has improved in
theyears since[45,54].However, evenwhenusers successfullydown-
load data exports, they encounter usability hurdles when viewing
and understanding them. Veys et al. [82] found that users feel over-
whelmedbythesheersizeanddisorganizationof thedata.Boremetal.
[9] had participants annotate their own data exports with reactions
of confusion, creepiness, interest, and surprise. To improve usability,
Schufrin et al. [70] developed a visualization tool for users to upload
and explore their data exports using a variety of views and filters.

Exportsasdatasets. Dataexports themselvescanbeusefuldatasets
for downstream tasks such as analyzing user activity. Ebbers et al.
[25] reconstructed car usage fromdata exports fromvehicle assistant
apps. Onaolapo et al. [61] used data exports to examine in-the-wild
usage of honeypot Facebook accounts. Razi et al. [63, 64] and Ali

et al. [1, 2] used them to understand and detect harmful interper-
sonal interactions among adolescents on Instagram using metadata,
media, and linguistic characteristics of messages. No prior work yet
has looked at the feasibility of using data exports for investigating
account compromise within the context of TFA.

Ethically acquiring ecologically valid data exports is often chal-
lenging [6]. Prior studies have either asked users to donate their data
exports (“data donations”) [1, 2, 63, 64] or analyzed exports from
researcher-controlled accounts [25, 47, 61]. Concerns about partic-
ipant privacy limit what can be learned from data donations, while
researcher-controlled accounts may not fully capture authentic user
behavior [6, 64]. Given the sensitivity of TFA, we chose the second
method following the procedure outlined by Leschke et al. [47].

3 Method
Wecreated a set of researcher-controlled accounts and simulated reg-
ular app usage to match the real-world behavior of hypothetical sur-
vivors andabusers in aTFAscenarios.We selected a total of six online
services for our analysis. Two of these are run by operating system
vendors:Apple iCloud [39] andGoogle [50, 51].Given theubiquity of
iPhone andAndroid devices,most users are likely to have an account
with at least one of these two platforms. The remaining four services
are popular social media and messaging services: Facebook [57], In-
stagram [41], Snapchat [73], and Discord [23]. The first five services
have been identified in prior research as commonly weaponized
technology-facilitated abuse (TFA) scenarios [30, 32, 63, 83]. We
included Discord because it has over 200 million active users and
provides extensive account activity logs in its data exports [22].

Nov ‘24 Dec ‘24 Jan ‘25 Feb ‘25 Mar ‘25

Create Account

Benign Simulation Attack Sn. 1

Request
Exports
(DJan)

Attack Sn. 2

Request
Exports
(DFeb)

ASIWalkthrough

Figure 1: Simulation & Data Collection timeline. We first
simulated benign usage activity for more than two months. Then,
we simulated attacks from the perspective of the Alex (abuser)
persona against Sam (survivor) on two separate days, shown as
Attack Sessions 1 & 2 (Section 3.2). We requested data exports from
Sam’s account on each service within 8 days of each attack session,
and refer to the two datasets asDJan andDFeb.

3.1 Account Setup & Benign Simulation
We drew upon prior work by Leschke et al. [47] to create mobile
research environments that minimize the collection of the research
team’s personal information. We created two pseudonymous user
personas:Alex,who represents the abuser, andSam,who represents
the survivor. We designated each user persona a mobile phone: an
iPhone 7 (iOS 15.7) for Alex and an iPhone XR (iOS 17.7.1) for Sam.
Both phones remained onWi-Fi and had no active SIM card.We used
phones rather than PCs in order to access platforms through both
mobile apps and the browser. iPhones were chosen to test iCloud

https://www.facebook.com/dyi
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Attack Goal Capability Services Attack Steps

A1.
Account Surveillance

Alex knows Sam’s creden-
tials. Sam has MFA disabled.

All except iCloud.† Gmail
accessed via browser; others via
mobile apps.

1. Alex logs into AccSam from PhoneAlex.
2. Alex browses emails / messages in AccSam from PhoneAlex.
3. Alex logs out of AccSam.

A2.
Location Monitoring

Alex has authenticated ac-
cess to PhoneSam and all
logged-in applications.

Apple (FindMy), Google Maps
(Location Share), Snapchat
(Snap Maps).

1. Alex takes PhoneSam, navigates to the service app and shares
location with AccAlex on AccSam.
2. Alex views Sam’s location on AccAlex from the respective
app on PhoneAlex

A3.
Impersonation

Alex knows Sam’s creden-
tials. Sam has MFA disabled.

All except iCloud.† Gmail
used via browser; in-app direct
messaging for others.

1. Alex logs into AccSam from PhoneAlex.
2. Alex sends a message impersonating Sam from AccSam.
3. Alex deletes or unsends the message.
4. Alex logs out of AccSam.

A4.
Lockout & Control

Alex has authenticated ac-
cess to PhoneSam and all
logged-in applications.

All platforms. iCloudandGoogle
accessed via browser; others via
in-app password reset.

1. Alex attempts and fails to log into AccSam from PhoneAlex.
2. Alex initiates password reset or recovery for AccSam.
3. Alex resets the password using access to PhoneSam.
4. Alex logs into AccSam from PhoneAlex.

†We did not simulate these attacks within iCloud as it does not let users disable MFA and iMessage is not available through the browser.

Figure 2: Four attack simulation scenarios considered in our study. Alex (abuser) and Sam (survivor) are our two user personas.
PhoneAlex and PhoneSam are their primary devices, which they use to access Sam’s account, or AccSam.

features (e.g., FindMy, iMessage) that are unavailable on Android
devices. For eachuser persona,wefirst opened anewGoogle account
via the designated phone’s Safari browser and then used this email
to create an Apple iCloud account. Next, we downloaded and set
up accounts for the following mobile apps: Gmail [50] and Google
Maps [51] (used existing Google account), Facebook [57], Insta-
gram [41],3 Snapchat [73], and Discord [23].We created all accounts
onNov. 8th, 2024, although our Facebook account took an additional
six days to be verified. Some account verification steps required
a non-VoIP phone number or secondary email; if so, we used the
first author’s contact information, which was redacted during pre-
processing (Section 3.4). We only set up multi-factor authentication
(MFA) when it was required (iCloud), because prior work suggests
survivors in TFA contexts often do not have it enabled [31, 38].

We created detailed simulation schedules for each account, which
beganwith aperiodof benignusage to generate realistic data exports.
During this period from account creation until mid-January 2025
(see Fig. 1), our Alex and Sam personas messaged each other, viewed
and created posts, searched for content, and changed profile settings
and authentication mechanisms. Following Leschke et al. [47], our
research accounts only interacted with each other and large orga-
nizational accounts (i.e., universities, news sites). No messages or
posted content contained identifying details. We recorded the start
and end times of significant simulation steps in a shared simulation
log document. After over twomonths of regular benign usage, we
simulated four account compromise attacks, whichwe describe next.

3.2 Attack Simulations
To better understand how data exports represent SRI, we simulated
account compromise attacks by an interpersonal adversary, drawing
upon common experiences of TFA [31, 33, 56].

3Although both Instagram and Facebook are subsidiaries of Meta, we treat them as
separate due to distinct in-app request interfaces and different data export formats.

Threat model. Many, if not most, adversaries in TFA contexts are
UI-bound [33], conducting attacks only through application user in-
terfaceswhile aided by physical or interpersonalmeans.We consider
two attacker capabilities:
(1) Known Credentials: Prior work indicates that survivors share

passwords with abusers, sometimes willingly and sometimes
by coercion [19, 24, 31, 33]. An abuser may know private infor-
mation about the survivor, such as children’s or pets’ names,
that makes it possible to guess credentials [32].

(2) Authenticated Device Access: Even if account credentials are
not shared, abusers can exploit physical proximity to survivors’
devices or knowledge of device PINs to bypass account authen-
tication mechanisms [32]. Notifications containing 2FA and
account recovery codes are often visible on locked devices.

Attack simulation design. We designed four attacks based on cat-
egories of TFA threats identified by Thomas et al. [77] that require
privileged access to a survivor’s accounts and devices: surveillance,
impersonation (specifically, “hijacked communication”), and lock-
out & control. Because surveillance encompasses a range of threats,
we consider location monitoring separately from surveillance over
general account activity like posts and messages.

For each attack, we defined a set of step-by-step actions (see
Fig. 2). One author simulated the role of Alex (abuser) carrying out
attacks against devices and accounts belonging to Sam (survivor).
We conducted all four attacks consecutively in a single attack session.
Because several ASIs only show security logs for 28–30 days [21], we
performed two such attack sessions 30 days apart, on January 21st
and February 20th. Fig. 1 shows a timeline of the entire simulation
procedure.

3.3 Collecting Data Exports
Within eight days of each attack simulation, we requested data
exports forall sixofSam’saccountsusing theresearchphone (PhoneSam).
We did not request Alex’s data exports, as their data would contain
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no relevant security-related information (SRI) for investigating at-
tacks against Sam. All services except Discord allowed us to select
specific subsets of data, file size limits, or preferred formats.Wechose
all available subsets, the largest file size (10–25GB), and CSV/JSON
over HTMLwhen possible. Most services delivered download links
within 2–4 days, though Apple delayed one file set by 17 days due
to temporary service unavailability. Five of the six services provided
a single ZIP archive; Apple instead delivered multiple archives. We
refer to the datasets requested after the January and February at-
tack simulations as DJan and DFeb, respectively. Each contains six
data exports, one per service, recursively unzipped and preserving
original file structures.

Basic statistics for each data export appear in Fig. 3. As our re-
search accountswere new,most socialmedia data exportswere small
(<10 MB). Apple’s and Google’s were larger (up to 827 MB), as they
included cloud-uploaded media files; for example, screen recordings
from our ASI walkthrough (see Section 4) were auto-uploaded to
iCloud Photos. Overall, DFeb contained 40 more files (10.3%) than
DJan. Notably, Snapchat’s data export decreased in size as the service
appears to delete chat media after 30 days.

3.4 Preprocessing
Afterobtainingfiles,weprepared themfor furtheranalysis to identify
and systematize the informationwithin them, especially since not all
of it applied to our research objective. First, we pseudonymized both
datasets to protect any remaining identifying information. Next, we
filtered out files if they lacked machine-readable text or contained
only data about features outside the scope of our simulation. To
enable consistent analysis across all services, we developed a uni-
fied entity-attribute-value (EAV) model and parser for data exports,
allowing us to query and sort the data chronologically.

Pseudonymization. Although we isolated our research devices
and accounts to the extent possible in a UI-bound simulation [47],
additional steps were required to protect the authors’ privacy. For
instance, Apple and Facebook required a non-VoIP phone number
to validate new accounts. Snapchat provided precise coordinates in
its location history file, and all services recorded IP addresses. We
replaced any potential personally identifiable information — such as
phone numbers, IP addresses, names of friend suggestions, and any
internal identification strings —with syntactically valid pseudony-
mous values. For example, each unique phone number was replaced
with "000-00-000x", where "x"was different for each. Similarly,
IP addresses were masked like "0.0.0.x".

Filtering Files. We removed files that did not contain machine-
readable text data, like images and videos. Additionally, we removed
files related to features we did not interact with during the simula-
tion phase, including IoT integrations, streaming activity, payments,
and educational features (full list provided in parser documentation).
While these files may be useful in investigating other TFA incidents
— namely, abuse via IoT devices [14, 74, 75] and financial services [7]
— we limited our scope to mechanisms of account compromise (see
Section 3.6). Fig. 3 shows the sizes of both sets of data exports before
and after filtering. All remaining files were HTML, JSON, and CSV,
with the exception of a README file from Discord and an MBOX
file from Google.

Platform Export
Original After Preprocessing

MB Files MB Files Elements

Apple Jan. 47 94 0.8 33 2,931
Feb. 827 130 0.9 28 3,348

Discord Jan. 6.2 10 6.2 10 3,695
Feb. 9.2 10 9.2 10 5,579

Facebook Jan. 0.3 112 0.2 97 465
Feb. 0.3 112 0.2 97 708

Google Jan. 22 91 9.5 29 2,698
Feb. 113 101 10.6 32 2,633

Instagram Jan. 0.2 41 <0.1 36 188
Feb. 0.2 42 <0.1 37 260

Snapchat Jan. 12 41 <0.1 17 136
Feb. 0.3 34 <0.1 15 138

Figure 3: Data export sizes. TheOriginal column shows export
sizes exactly as theywere downloaded. Google’s andApple’s exports
are large because we used their Drive and Photos features to collect
data exports and screen-recordings. The After Preprocessing column
shows export sizes file filtering (Section 3.4) as well as the number
of data elements parsed from each data export (excluding null or
empty elements).

DataModel. Because our data exports are sparse and differwidely
in format,we broke files into data elements, individual chunks of data
representing events or objects within a machine-readable file [70].
Then, we parsed data elements in JSON, CSV, andHTMLfiles into an
entity-attribute-value (EAV)model [53]. Each entity is a data element,
such as a CSV row or a JSON dictionary within a list. We use entity
and element interchangeably. Attributes are properties of the entity
or element, usually column headers or JSON keys. Values are the
corresponding cells or dictionary values for each attribute. Each
element additionally has a reference to its service, file path, and a
unique ID assigned by the parser. We provide an example in Fig. 4.

Parser Implementation. File formats, even from the same service,
tend to vary widely [9] and no services provided machine-readable
schema definitions. Due to this variation, we designed our parser to
handle file types rather than individual files. For CSV files, each row
is an element, with column headers as attributes and corresponding
cells as values. Most JSON files we encountered were lists of one-
dimensional dictionaries; in this case, we parsed each dictionary as
an element. We flattened nested keys using string concatenation
with a delimiter. If a list of dictionaries was nested within another,
we flattened the hierarchical data structure. An example of this trans-
formation is provided in the parser documentation on GitHub. Since
Google provided some critical SRI only in HTML format, our parser
processed HTML tables like CSV files and nested HTML elements
like JSON files. The number of data elements parsed from each data
export is given in the right-most column of Fig. 3.

The parser additionally extracted date and time fields, if present,
from the attribute column using regular expressions. If an element
contained multiple timestamps, we used the most recent.

File Anomalies. Consistent with previous findings [62, 85], we en-
countered machine-readability issues such as poorly-escaped char-
acters and improperly formatted files. For example, Apple provided
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data elements

Figure 4: Example of data from Sam’s Google export parsed
into our entity-attribute-value datamodel. This file in question
is an HTML file containing a table of login and logout events. We
parse each of the outer rows in this table into an element and assign
it an integer ID. Column headers and their corresponding cell values
become attributes and values, respectively. This format unifies
sparse data across multiple files in a single table, allowing us to
perform structured queries and sort by time.

several malformed CSVs containing multiple CSV segments con-
catenated in the same file. In this case, our parser processed each
segment separately. In Instagram’s and Facebook’s data exports, we
observed several files in which JSON keys were literal references to
data structures (e.g., "vec" and "dict"). We adjusted our parser to
read applicablefile content directly into thedescribeddata structures.

Grouping elements. As noted in Figure 3, we ended up with thou-
sands of individual data elements for some services, far too many to
manually label. In their data export visualization tool, Schufrin et al.
[70] categorized data based on substrings within the filename. How-
ever, we observed that some platforms (notably Discord) provided a
large quantity of heterogeneous data in a single log file. To account
for this, we identified a set of category attributes for each service that
explicitly describe the category or type of a given element. In the
elements shown in Fig. 4, "Activity Type" would be a category
attribute. We generated our list of category attributes by querying
a set of seed terms and manually removing false positives (full list
available in the parser documentation).

Then, we grouped two elements if they (1) originate from the
same file, (2) have the same set of attributes, and (3) have the same
value for each category attribute. We refer to these three require-
ments as a group’s characteristic features, and we assigned each
group an ID. For example, the two elements shown in Fig. 4 have
the same file and attributes, but they do not have the same value
for "Activity Type". The first element would be grouped with
other "Activity Type: Logout" elements, and the second would
be grouped with "Activity Type: Login" elements.

There is a possibility that we failed to group two similar elements
or incorrectly grouped two elements. The former would have in-
creased our manual coding efforts and would not have impacted the

accuracy of our analysis, while the latter could lead to missed ele-
ments. Therefore,wemanually verified a randomsample of elements
from each group; we did not find any erroneous grouping.

Labeling groups using a qualitative content analysis. We labeled
each group using a set of codes, or labels, that we derived using
qualitative content analysis of the data export content (more details
in Section 4). We created a mapping of each group’s characteristic
features to a set of labels to analyze future data exports.

ProcessingDFeb with our pipeline developed forDJan. We initially
developed our data analysis pipeline using DJan. To validate its
generalizability, we applied the same onDFeb. We filtered, parsed,
and grouped elements present in DFeb by the same procedure as
above. For each group in DFeb, we applied labels from DJan based
on shared characteristic features. Due to schema changes between
DJan andDFeb, we observed that our parser and the grouping heuris-
tic were unable to map labels to every element in DFeb. For exam-
ple, Facebook and Instagram removed two keys ("ent_name" and
"ent_field_name") from one of their common JSON file formats.
Apple added a total of 6 new segments to several of its malformed
CSV files discussed before.

After accounting for such changes, we found that we could label
all but 45 groups of elements in DFeb using our pipeline. Among
these, 13 were due to new files inDFeb (provided by all services ex-
cept Discord), and 32 were due to new category attribute values. We
manually applied labels to the 45 new groups inDFeb, and found no
new types of information that we had not yet encountered inDJan.
We assigned labels based on exact matches of group characteristic
features; however, futurework could explore fuzzymatching or LLM
techniques to accommodate minor variations.

FinalDatasets. Aftercompletingourdataexportprocessingpipeline,
we generated a database table (like Fig. 4with additional columns for
labels) for each service containing all elements from its data export.
Each element has references to a unique ID, service name, source
file path, timestamp, and a set of attribute-value pairs; in addition to
label(s) generated during qualitative coding (Section 4). This struc-
ture enables efficient querying and analysis using standard database
tools, which we used in Section 5 and Section 6.

3.5 Positionality & Ethical Considerations
The authors have expertise in digital safety and violence prevention,
with three providing direct technical support to TFA survivors using
trauma-informed care [69]. This advocacy shaped our research ques-
tions, attack simulations, and the sensitive framing of our findings.

As discussed in Section 2, data exports often contain sensitive
data like emails, chat logs, and location history thatmay be unsafe or
uncomfortable for survivors to share. It was initially unclear which
files held relevant information or how to safely redact them, so the
authors reviewed their own data for familiarity but did not con-
tribute them for analysis. Instead, all data exports were generated
using researcher-controlled accounts with simulated behavior, with
selected data redacted to protect the authors’ privacy. As no human
subjects were involved, this study did not require IRB review.
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3.6 Limitations
One limitation arises from our choice to use iPhones in our simula-
tions. Online platforms may collect different quantities of data from
theorigin device dependingon itsmanufacturer or operating system;
e.g., Google’s takeout may contain more hardware identifiers for
Android phones.We argue this was a necessary design choice to test
both iCloud and Google features (see Section 3.1), but future work
should aim to run similar tests with a wider range of devices.

We also note that not all TFA involves account compromise. For
example, an abuser can harass a survivor by sharing non-consensual
intimate imagery (NCII)without accessing the survivor’s account. In
such cases, data exports offer little value, as no relevant information
wouldappear in thesurvivor’s accountexport.However, inTFAcases
where the abuser does access the survivor’s account (e.g., sending
harassing messages, posting harmful content, or changing settings),
data exports can provide critical evidence, including message logs,
posts, and session metadata. We focused specifically on account
compromise, as these cases are both common among survivors and
difficult for advocates to investigate using existing tools.

4 Security-Related Information in Data Exports
In this section, we addressRQ1:What types of information present
in data exports are relevant to investigating account compromise by
an interpersonal abuser? Data elements in exports generally fall into
two broad categories: (1) information describing the current state
of the account at the time the data export was generated, and (2)
historical events or actions initiated by the user or application. For
instance, a list of current privacy settings or authenticated devices
reflects the account’s state, while logs of setting changes or time-
stamped login records would be events. We argue data exports are
particularly valuable for investigating account compromise because
they contain lists of past security-critical events that may not be
otherwise accessible to the survivor through ASIs.

Method:QualitativeContentAnalysis. Consistentwithpriorwork[9,
82], we observed that naming conventions in data exports are se-
mantically ambiguous and inconsistent. Accordingly, we treated
data export schemas as qualitative data sources.While earlier efforts
have relied on “top-down” parsing of data into predefined behavioral
categories via techniques such as regex matching [61, 70], we found
that these categories lack the granularity needed to analyze nuanced
security-related information (SRI) in account compromise scenarios.
Therefore, we adopted a “bottom-up” qualitative content analysis
approach [26, 29, 71] to construct a taxonomy of SRI directly from
data export schemas.

Our unit of analysiswas each data element from the datamodel de-
scribed in Section 3.4. As some services yield thousands of elements
(see Fig. 3), we reduced manual workload by coding a representative
instance per group of elements.

We used both inductive and deductive coding [44, 67, 68], using a
taxonomy of adversarial account behavior by Onaolapo et al. [61] as
our initial codebook. The first author coded one element per group in
DJan, proposing new codes when existing ones were inadequate for
our use case. For example, we refined “Hijacker” into more granular
categories: account creation, authentication, (active) interaction, (pas-
sive) viewing, and notification. We also flagged “background activity”
not explicitly driven by user interaction.

The team iteratively refined the codebook by adjusting defini-
tions and categories for consistency. After revisions, the first author
re-codedDJan, and another author independently coded a random
sample of 50 entries. We resolved eight discrepancies, primarily due
to ambiguous definitions, through group discussion. Our codebook
is available in the Appendix.

Results. We identify two categories security-related information
relevant for account compromise in data exports: (a) data related to
user authentication, such as login and logout events, and (b) data con-
cerning security settings, including changes to email addresses, pass-
words, recovery methods, and multi-factor authentication. Further-
more, we systematize (c) logs of app activity, notifications, other pro-
file settings, and user interactions that — while not directly security-
related —may have important implications for understanding what
an abuser accomplished in a compromised account.
(a) Authentication logs. We observed a range of authentication-
related information in data exports, including records of logins in
all services, logouts on all platforms but Apple and Snapchat, and
even failed login attempts (Google).

Authentication information was often scattered across multiple
files, making analysis difficult. Google’s login records were split
across folders, with some hidden in unintuitively named files like
"<username>.SubscriberInfo.html." Some platforms provided
a primary folder for this data with a clear, security-related name, but
key details frequently appeared elsewhere. For example, Meta pro-
vided a primary "security_and_login_information" folder, but
in-depth device identifiers were in the "personal_information"
folder. Redundancy of SRI across multiple files was common. Many
files in Meta’s primary security folder were simply subsets or ag-
gregations of other files. Apple provided daily, weekly, and monthly
summaries, and Discord duplicates the same events across four files.
This overlap can easilymislead survivors or advocates, causing them
to mistake one login for multiple unauthorized attempts.

Authentication logs also vary in granularity and often blend user-
driven actions (e.g., logins) with system-driven ones (e.g., token re-
freshes). Facebook’s "account_activity.json" file, for instance,
mixes these events without a clear distinction. Apple stores its main
logs in "Apple ID account and device information," but addi-
tional analytics areburied invastCSVfilesunder folderswithopaque
names like"Other Data Part 4 of 5."Similarly, thismaymislead
or alarm users.
(b) Security settings. The majority of services provided records
of changes to critical security settings such as passwords and emails.
All data exports contained logs of changes to the primary recov-
ery email associated with the account (including both the old and
new addresses), even after the recovery email has been removed
from the account. All platforms except Discord recorded changes
to passwords, although not the password itself (for good reasons).
Discord’s data export did not explicitly log password changes, yet
it did record email notifications sent to the user about password
recovery attempts, as well as when those emails are opened. In cases
of account lockout or surveillance, understanding the history of
password, email, and phone number changes can help survivors
determine who had access to their accounts and when.
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(c) Activity and notification logs. Data describing other user-
drivenactivity (e.g., interactionswithotherusers, browsingandpage-
view history, and logged notifications) can be incredibly helpful to
understandwhat an abuser accomplished after obtaining account ac-
cess. All social media services provided logs of posts, comments, and
messages (both sent and received) from the account in question. Ap-
ple’s data export did not contain iMessage data, which is end-to-end
encrypted. Google provided sent and received emails in anMBOX
file. Google, Facebook, and Instagram logged recent search history.
The degree to which services logged passive use, such as opening
apps or viewing content, varied. Discord recorded intense click an-
alytics whenever the user opened chat channels or viewed settings
pages. Facebook and Instagram both logged URLs of media content
viewed from the account. Google provided thousands of lines of
app access data in "Activities - A list of Google services
accessed by.csv," essentially periodic pings whenever a user
navigates to a page or loads content. Facebook similarly recorded
timestamps for recent intervals of activity. Each service recorded at
least a subset of email notifications sent from the service to the user
(inGmail’s case, these are available in theMBOXfile).Whilemost are
marketing emails, some (like Discord, as mentioned above) respond
to security-critical events. Regardless, notification data may help
survivors contextualize whose contact information was associated
with their account at what times.

5 Comparing Data Exports with ASIs
In this section, we answerRQ2:How does security-related informa-
tion (SRI) within data exports compare with information presented in
account security interfaces? Account security interfaces (ASIs) are
essential for survivors (and the advocateswho support them) to iden-
tify if their accounts have been compromised [21]. However, prior
research [21] has noted that some ASIs are seriously limited in their
ability to protect survivor’s safety.Many leave out critical login infor-
mation, such as originating IP addresses (Apple,Discord,Google, and
Instagram) or exact times (Apple, Snapchat, andDiscord). SomeASIs
display only currently active sessions instead of past logins, which
can let abusers conceal previous account access [21]. Descriptions
of logged-in devices are often limited to coarse-grained information
like "iPhone" or "Samsung,"which can make it quite difficult for
survivors to identify which devices are benign.We evaluate whether
data exports can address several of these limitations by comparing
security-related information in data exports against ASIs.

Method: UI Walkthroughs. We systematically analyzed the con-
tents of theASIs viaUIwalkthroughs [43, 49]within2–3weeksof our
February attack simulation (see Fig. 1), ensuring we could capture
time-limited data before it disappeared [21]. We followed instruc-
tional guides published by the Clinic to End Tech Abuse (CETA) [78]
for locating ASIs and changing critical settings. These guides are
designed to help survivors check their accounts, but they are also
often used by tech clinic consultants [18, 80]. As no guides existed
for Discord, we navigated through all settings related to authenti-
cation, user profile, and sharing, such as Settings > Device,Account,
and Privacy & Safety. We examined the mobile app interfaces of
all six applications and extended our analysis to also include the
browser-based ASIs for Google and Apple.

Duringourwalkthrough,werecorded thescreenand tookdetailed
notes about all SRI (authentication and security-critical settings, as
described in Section 4) for each ASI page visited. We additionally
noted the retention period and device identifiers associated with
security events.Webuild our initial list of device identifiers from [21]
and add additional types as we encounter them.

Key findings. We identify three core differences between the SRI
available in theDFeb dataset and ASIs: (1) data exports offer higher-
resolution identifiers of logged-in devices than ASIs; (2) some types
of SRI are available exclusively through data exports; and (3) data
exports retain longer histories of certain security events compared
to what is shown in ASIs. We discuss in greater detail below.

5.1 Device Identifiers
We found that data exports contained more identifying information
about currently logged-in devices and active sessions (e.g., hardware,
software, network, and location attributes) than their ASI counter-
parts for all six services. Moreover, there was no case in which an
ASI contained identifying information about a device that was not
either explicitly present or easily inferred from data export contents.
Fig. 5 presents a side-by-side comparison of identifiers observed in
ASIs and data exports.

Device Hardware & Software Information. Because iOS does not
typically allow 3rd party apps access to unique hardware identifiers
such as device serial numbers and IMEIs, only Apple presents these.
All ASIs provided high-level device models (“iPhone” or “Android”)
for all logged-in devices and current sessions, but this may be insuf-
ficient information for survivors if their abuser uses a device of the
same type (like the two iPhones in our simulation). In this case, the
model version (iPhone XR vs. 7) would provide more utility. Fig. 6
shows the asymmetry between Discord’s ASI and data export; the
ASI shows just “iOS,”while theexport supplies thedevice’smodel and
version. Although the value "iPhone11,8" seems to be a mistake,
this is amobile device code referring to the iPhone XR.4 However, the
model version was not always available, for example, in theMobile
Safari session in Fig. 6. We observed that many services included
this identifier for mobile app sessions, but omitted it for browser ses-
sions. Thismay be due to recent privacy enhancements implemented
by Apple on the Safari browser to reduce information in user agent
strings [46]. Still, device identifiers frombrowser sessions, evenwhen
limited, can help survivors recall whether a login was legitimate. For
instance, Google’s logs of browser-based accesses still contained iOS
versions (15.7 and 17.7.1). This allowed us to distinguish between
Alex’s and Sam’s iPhones, which we could not do with the ASI alone.

Multiple sessions on the same device. Confusingly, multiple ses-
sions from a single device often showed up in ASIs as separate “de-
vices.” Fig. 6 shows an active browser session as a different device
even though we access Discord only through its mobile app. We hy-
pothesize this is because some in-app settings redirect to the in-app
browser. We found generally that data exports offered more clarity
between browser and app-based sessions. Similarly, Google’s ASI

4See additional examples here: https://gist.github.com/adamawolf/3048717 [84]

https://gist.github.com/adamawolf/3048717


Hidden in Plain Bytes: Investigating Interpersonal Account Compromise with Data Exports CCS ’25, October 13–17, 2025, Taipei, Taiwan

Identifier Type Apple Discord Facebook Google Instagram Snapchat

Hardware

Serial number  × × × × ×
IMEI  × × × × ×
Model (iPhone)  G#     
Model version (XR)  G#     

Software

User agent × × G# G# G# G#
OS (iOS)     G#D  
OS version (15.7)  G# G# G# G#D G#
Locale/language G# G# G# G# G# G#
Browser type ×  G#  D G#D  

Network & Location

IP address G# G#  G# G#  
Country G#  D     A

State G#D  D   D  D  D

City G#D  D   D  D  D

Other

Device name G# × × × × ×
Session cookie/ID × G# G# × G# ×
Internal device fingerprint × × G# × × ×
Time of login G# G#    G#

Figure 5: Device and network identifiers in data exports and ASIs describing currently logged-in devices. We label identifiers as
present in bothASIs anddata exports ( ), only indata exports (G#), or inneither (×).While “TimeofLogin” is not a standarddevice identifier, prior
work [21] shows that survivors often use timestamps to spot suspicious activity. Fields that can be easily inferred (e.g., location from IP or device
details from user-agent strings) are marked as present. We use the superscripts “D” for inferred fields in data exports and “A” for those in ASIs.

Figure 6: Identifiers in Discord’s ASI vs. data export The
screenshot on the left shows the Settings > Devices page in Discord’s
iOS app for Sam’s account when only Sam is logged-in [23]. The
code blocks on the right are two (truncated) dictionary entries in
the export mapping to the sessions on Sam’s iPhone XR. The bold
fields show device and network identifiers not present in the ASI.

showed7active “devices,”butGoogle’s trusteddevicefile ("Devices
- A list of devices (i.e. Nest, Pixel, iPh.csv") seems to
resolve this redundancy, logging only two phones.

IP address & location. All data exports provided current or last-
used IPaddresses forcurrent sessions,butonlyFacebookandSnapchat
displayed themwithin their ASIs. Most ASIs instead displayed the

login location, which appeared to be inferred from the client IP
address. Location identifiers typically consist of country, state or
region, and city. However, there are cases where an IP address itself
would be more useful than general location data, for example, if
the survivor and abuser live in the same city. In a clinical setting, a
trained consultant could use the IP address to identify other actions
originating from the abuser’s device or network. We experiment
with the feasibility of this in Section 6.

Robustness. Daffalla et al. [21] demonstrated that unauthorized
accesses to accounts can be obscured by spoofing IP addresses and
user agent strings. We did not test if data exports are more resistant
to spoofing, but we have no evidence to suggest they are more so
than ASIs. This likely extends to derived fields such as inferred lo-
cation and device model/OS, with the possible exception of Apple’s
and Google’s hardware identifiers for Apple devices and Androids,
respectively.

5.2 Historical SRI
Many ASIs show only active sessions or currently logged-in de-
vices. Daffalla et al. [21] demonstrated that access hiding attacks are
possible on some services if an attacker terminates a session and
therefore conceals their login from the ASI. We found that data ex-
ports provided significantly more information compared to ASIs
about historical authentication events and changes to critical secu-
rity settings, as shown in Fig. 7.

Sessions & Logins. In [21], access hiding attacks were successful
on Apple/iCloud, as well as in Google’s Recent security history inter-
face, if Google failed to classify the login as risky or unknown.We
confirmed this in our ASI walkthrough and found this also happens
to some extent on all services except Facebook. Instagram also ap-
pears to display only logins classified as “new.” Its Recent Emails tab
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Platforms Active
Sessn.

Hist.
Logins

Logouts Pwd.
Change

Email
Change

DE   ×   Apple ASI # × × # ×
DE    ×  Discord ASI  × × × ×
DE      Facebook ASI    # ×
DE      Google ASI  # × # #

DE      Instagram ASI  # ×   

DE   ×   Snapchat ASI  # × × ×

Figure 7: Active and historical security events shown in data
exports (DE) andASIs. The figure indicates whether all ( ), a sub-
set (#), or none (×) of the simulated events (i.e. all active sessions or
all historical password changes) appeared in the data exports orASIs.

claims to show logins that triggered email notifications in the past 14
days. However, Alex’s logins during our simulations did not appear
in this tab, even within the specified timeframe.We suspect this is
because Alex’s iPhone 7 had previously accessed the account during
the January simulation and was therefore not considered new. This
is concerning, as known logins are not always safe logins from an
interpersonal technology abuse perspective.

Discord, Instagram, Facebook, and Google provided both past lo-
gins and logouts in their data exports. Google also recorded failed lo-
gin attempts in "Google Account/<username>.SubscriberInfo.
html."Discord recorded the loginmethod, which in our casewas al-
ways"password" except immediately after account registration.Ap-
ple providedmultiple fileswith data about authenticated devices, but
only one ("Apple ID account and device information/Apple
ID SignOn Information.csv") showed time-stamped login histo-
ries from both Apple devices and browser-based accesses. However,
this file contained far fewer device identifiers (IP address only) than
other files with authentication data.

Password&EmailChanges. Incasesofaccount lockoutor takeover,
knowledge of the previous password and email changes can help
survivors understandwho has had account access at what times [77].
Several ASIs displayed the date of the last password change, but only
Instagram provided the full password and email change history in
its interface. Google showed password/email changes from the last
30 days in its Recent security history interface.

In our data exports, all services provided timestamped logs of
email and password changes, alongwith the new and previous email
values. Several ASIs (Apple, Facebook, Google) showed the date of
the most recent password change, but not all historical changes.
Instagram’s ASI provided comprehensive records of both.

5.3 Log Lifetimes
As noted by Daffalla et al. [21], some ASIs only show SRI within a
limited time window. For example, Google’s Recent Security Activity

ASI states that it displays security events from the last 28 days, while
Gmail’s web-based Activity on this account interface shows only the
10 most recent sessions.

In contrast, we found that all data exports in bothDJan andDFeb
include login history dating back to account creation. ForDFeb, this
spans roughly 102–125 days, depending on the service and the delay
between requesting and receiving the data.5 We cannot confirm
whether data exports always retain login data beyond this window.
Some export files containing generic user activity had obvious re-
tention limits. For example, Google’s large "Activities.." file6
contained approximately 30 days of history: the earliest entry inDJan
is fromDec 30, 2024, and inDFeb it is Jan 28, 2025. Snapchat similarly
limits chat metadata to about a month in "chat_history.json",
which is consistent with its ASI.

6 Mapping Attacks in data exports
In our final analysis,we addressRQ3:Towhat extent canwemapdata
exports to abuser actions during account compromise attacks? Prior
research [31, 65] suggests that once users suspect compromise, they
often seek answers about how access was gained and what actions
were taken. As we demonstrated previously in Section 5, ASIs alone
often fail to provide a complete picture of this.

We explored how actions taken by Alex’s persona using Sam’s
accounts were represented in our datasets. Using ground truth from
our simulation logs (precise timestamps and device identifiers), we
mapped specific steps from each of the four attacks we simulated
(A1–4 in Section 3.2) to data elements in the February dataset (DFeb).

Identifying the time andmethod of authentication inA1,A3, and
A4was relatively straightforward across platforms. However, our
ability to reconstruct post-authentication activity varied depending
on the service and type of action taken. Discord’s detailed click an-
alytics and Google’s access logs allow us to link actions to specific
devices or sessions. In contrast, platforms like Instagramoffer limited
visibility. Notably, we find no evidence of ongoing location-sharing
activity in any data export, despite its likely status as personal in-
formation under right of access.

While real-world scenarios lack this level of certainty, our con-
trolled setting enables exploratory analysis. We discuss the practical
challenges and opportunities for using data exports in clinical com-
puter security consultations [38] in Section 7.

Method. For each data export in DFeb and attack scenario, we
queried for attack-related data elements (1) by time and then (2)
by known identifiers. First, we sorted the preprocessed data export
by time and used our attack simulation log from February 21st to
filter elements within 5 minutes of the attack window. From this,
we analyzed a selection of Authentication, View, Interaction, Settings,
and Notification events (see the Appendix for precise definitions).
Second, we queried Alex’s (attacker) known device and network
identifiers on the entirety ofDFeb to account for possible incorrect
ormissing timestamps: "iPhone 7", "iPhone9,3" or "iPhone9_3"

5Some services include data between the submission of data export request and
receiving the data in their data exports. For example, Apple’sDFeb contained data from
March even though we requested the data export on Feb 24, 2025.
6Full file path: "Access Log Activity/Activities - A list of Google services
accessed by.csv")
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(device model code obtained from [84]), and "0.0.0.23" (masked
IP address of the attacker during the attack simulation).

For each of the four attacks we simulated (Fig. 2), we discuss the
feasibility and comprehensiveness of mapping the attack based on
the data exports below.

A1.DirectAccount Surveillance. This attack involvedAlex (abuser)
logging into Sam’s (survivor) account using PhoneAlex and opening
Sam’s messages/emails. We successfully queried Alex’s login in all
data exports, as each recorded historical logins (Fig. 7) with an IP
address and user agent/device model at minimum (Fig. 5). When
Alex accessed Sam’s Gmail account through the browser, Google
logged just"iPhone" in theuser agent string insteadof the fullmodel
name. The remaining services provided the device’s model version
(e.g.,"iPhone 7"). Instagram, Facebook, andGoogle recorded logout
events at the expected time with the same set of device identifiers
as the login events. Only Discord indicated that Alex opened Sam’s
messages due to its granular logs of user click behavior. Although
Discord’s data export contained events labeled "session_end" else-
where in the dataset, no such event was recorded at the time of our
simulated logout.

A2. Location Sharing Surveillance. In the location sharing attack,
Alex shared Sam’s location on Snapchat, Google Maps, and iCloud
Find My Friends with their own account, taking advantage of their
authenticated access to PhoneSam. We were unable to find records
of Sam sharing location with Alex within any services’ data exports.
Although Snapchat, Google Maps, and Apple all collected device lo-
cation data passively, their data exports do not indicate whether that
information has been shared with anyone and, if so, with whom it
was shared. We failed to find any indication that services retain past
or terminated location-sharing activity. Users can still access their
current location-sharing status through the app interface, however.

A3. ImpersonationAttack. In this attack,Alex logged intoSam’s ac-
count (AccSam) from their own phone and actively sent messages as
if they were Sam. Alex then deleted the messages, wiping their trace
from AccSam. Among the services we tested under this attack sce-
nario, login and logout events appeared similarly to those inA1. Each
provided logs of non-deleted chats, and Google provided trashed
(but not permanently deleted) emails in the MBOX file. Among so-
cial media services, only Snapchat and Discord’s exports recorded
message deletion, though neither provided the deleted content. Dis-
cord recorded two events with "event_type: send_message" or
"message_deleted" at the expected timestamps with attributes
"channel_id"7 and "message_id."Within the "messages" direc-
tory, we used "channel_id" to determine which chat channel con-
tained the deleted message, but "message_id" did not map to any
existing message content. Snapchat’s file "chat_history.json"
contained a record of a message sent from Sam to Alex with status
"STATUSERASEDMESSAGE" and a null "Content" field. Snapchat in-
dicated when this message was sent, but not when it was deleted —
just that it was deleted.

For Discord and Google, a significant amount of user activity un-
related to authentication (e.g., searching, sending messages) could
be traced to its originating login through multiple files. Discord’s

7A “channel” is a direct message with another user in Discord.

message events contained an IP address and detailed device mod-
el/OS data that we could attribute directly to PhoneAlex and its as-
sociated login event. While Google’s email records did not contain
device/network identifiers, we used the email’s timestamp to iden-
tify an app access event in the "Activities..." file associated
with Alex’s IP address, which then mapped to more detailed identi-
fiers in "<username>.SubscriberInfo.html". This was possible,
even though two devices were logged in simultaneously, due to the
precision of the app access timestamps.

A4. Account Lockout Attack. In this attack, we simulated an at-
tacker requesting a password reset on AccSam following multiple
failed login attempts. While we did not change other recovery meth-
ods (e.g., email or phone number) during A4, we verified email
changeswerecaptured indataexportsduringourbenignactivity sim-
ulations, as shown in Fig. 7. Across all services,wewere able to query
either the password reset initiation or the actual password change,
often along with device identifiers such as user agent strings and IP
addresses. Only Google’s data export includes prior failed login at-
tempts, available in "<username>.SubscriberInfo.html." Face-
bookandGoogle includedboth IP addresses anduser agent strings re-
lated to the password change, while Apple, Instagram, and Snapchat
recorded only timestamps. Facebook also logged password reset
requests. AlthoughApple did not show all loginswithin its ASI (only
currently active sessions), its data export captured the attacker’s
login from the expected IP address, lining up with our simulation
timeline. While Discord did not explicitly record password changes,
the service logged server-generated emails, such as password reset
messages. These contained timestamps and recipient email(s), which
could be useful for understanding how the abuser gained access.

7 Discussion: Operationalizing
Data Exports for TFA Investigation

In this study, we demonstrate that data exports contain security-
related information that can support investigations of account com-
promise. Specifically, in thecontextofTFA,weshowthatdataexports
provide more complete and historically rich logs of account activity
than account security interfaces (ASIs), and they can be instrumental
in tracing past attacks. While our findings highlight the feasibility
of utilizing data exports for this purpose, several challenges must
be addressed to operationalize their use in practice.

Identifying Attacks in Practice. In our simulated scenarios, we
knew the ground truth about when and how account compromise
occurred. In real-world cases, however, it is often difficult to con-
fidently determine whether unauthorized access has taken place,
especiallywithout contextual cues. Evenwith technical skills, identi-
fying adversarial activity (e.g., via IP address anomalies) depends on
factors like geographic proximity of the abuser and home network
configurations. Given the size and sensitivity of data exports, we
recommend that consultants continue using ASIs for initial triage.
If approximate timestamps or device identifiers are available, a tar-
geted review of the survivor’s data export may be considered when
it is safe and appropriate.

Machine Readability & Standardization. For data exports to sup-
port investigations, they must be machine-readable and consistent.
Weencountered issues such asApple’s use of nonstandardCSVswith
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poor character-escaping and Facebook’s rapidly changing schema.
Prior studies note similar challenges [62, 85]. While smarter parsers
can help, the lack of standardization limits the long-term viability of
tools built on top of data exports. Future right of access regulations
should provide guidelines for schema versioning, changelogs, and
machine-readable definitions to support maintenance of tools such
as ours and promote research reproducibility.

Data Collection & Transparency. We recognize the tension be-
tween user privacy and security when it comes to long retention
periods, detailed activity logs, and granular device identifiers, all of
which we observed in data exports (Section 5). While we do not en-
courage services to collectmore information from users, the fact that
services retain more data than they make easily accessible demon-
strates a lack of transparency. We urge services and developers to
make the critical security information that theyalready collect readily
available to those who need it.

Survivor Privacy in TFA Investigations. Data exports often include
extraneous or highly sensitive data unrelated to TFA investigations,
and they are frequently structured in formats that are inaccessible
to non-technical users. To support advocates in safely using data
exports for TFA-related cases, we built a filtering pipeline to exclude
sensitive content such as media, certain settings, and background
activity logs. However, this pipeline is currently platform-specific
and brittle, as data export structures vary widely and frequently
change, as discussed in Section 3.4. Future work could explore devel-
oping a client-side tool that helps survivors parse data exports locally,
select relevant subsets of data, and share themwith advocates via
time-limited, end-to-end encrypted links. Such tools could automate
redaction and support survivor agency in the data sharing process.

Abuse Potential of Data Exports. Safety risks to survivors during
the request and handling of data exports are significant andmust not
be understated. Prior research highlights vulnerabilities in right of
access processes, including weak authentication and susceptibility
to social engineering attacks [10, 54, 55]. Amajor concern is that data
exports are typically delivered to the primary account email, which
maybe compromised or sharedwith the abuser, potentially exposing
sensitive data. Consultants must be trained before recommending
data exports as a solution, and they should clearly communicate
these risks during and after consultations. Safety planning should in-
clude secure storage, deletion, and a trauma-informed approach [17]
to protect both the survivor and the consultant from harm.

Usability &Autonomy. Users often struggle to interpret their data
exports [9, 82], and even our technical team found the data challeng-
ing to analyze (Section 3.4 & 4). Ambiguous terms like "Summary
of Device Events" are rarely defined, and users may struggle to
determine whether observed anomalies signal compromise has oc-
curred. For TFA survivors, relying on experts to interpret this data
reduces their autonomy and may introduce safety risks. Services
could offer clearer exports through better documentation, in-line
definitions, and customizable views to help users understand their
data independently.

Use of Data Exports in Legal Contexts. Data exports offer a conve-
nient way to access bulk account data and provide richer context for
TFA thanwhat is typically available through app interfaces. As such,

data exports have the potential to serve as powerful evidence for sur-
vivors seeking legal remedies. However, data exports as they stand
currently often include inconsistent and ambiguous data attributes
that require subjective interpretation. Platforms should publish for-
mal documentation of their data formats and clearly explain key
attributes to reduce this burden. Finally, raising awareness of TFA
and the evidentiary value of data exports among legal professionals
is critical to ensuring better support for survivors.

8 Conclusion
Ourstudy is thefirst to identifydata exports as a tool for investigating
account compromisewithin the context of interpersonal technology-
facilitated abuse. We simulated four types of account-based attacks
across six popular online services using researcher-controlled ac-
counts, then analyzed the resulting data exports using a unified data
model.Weusedqualitative content analysis to identify andcharacter-
ize security-related information, and compared the depth and range
of this data against what is present in account security interfaces
(ASIs). By querying and inspecting data exports, we located traces
of many, but not all, of our simulated attack steps across services. In
contrast, ASIs frequently omit historical logins, changes to security
settings, or device-level attribution. Our findings suggest that data
exports can supportmore complete investigation of account compro-
mise than is possible through ASIs alone. Future work should strive
to create trauma-informed and privacy-preserving protocols to oper-
ationalize data exports within the clinical computer security setting.
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Appendix
We provide the complete codebook we developed as part of our qualitative content analysis of all the elements in six services in Fig. 8 below.
These labels helped us characterize account security-related information (SRI) in data exports in Section 4. The codebook was developed with
data fromDJan, but also applied toDFeb. We discuss generalizability in Section 3.4.

Activity Type Codes

Level 1 Code Level 1 Definition Level 2 Code Level 2 Definition

Authentication Records about authentication
including logins, logouts,
sessions, trusted devices, and
multi-factor authentication (MFA).

Login Login instances, both successful and unsuccessful. Includes
session initiation.

Logout Logout instances or session terminations.

MFA Multi-factor authentication (MFA) requests or challenges.

Settings Records about account settings sta-
tus or changes to account settings.

Email Email addresses associated with an account or changes to
emails. Includes verification during email change process.

Password Password metadata or changes to an account password.

Profile User profile settings (e.g., biographical information, profile
picture, visibility) or changes to them.

MFA MFA status, or addition/modification/deletion of MFA
methods. Includes verification during modification.

Consent Records about user consent to cookies, privacy policies, ToS,
and EULAs.

Interaction Recordsaboutusers interactingwith
other users within the application,
or creating user-facing content.

Chat Records of a user sending messages, and posting text, media,
or comments. Includes deletingor unsending anyof the above.

Emotion Records of a user liking, saving, bookmarking, reporting, or
blocking certain media content.

Location Share Records of a user enabling or disabling live location sharing
(or receiving shared locations) with one or more contacts.

Friend Mod-
ification

Friend/contact lists or records of a user adding, removing,
or blocking a contact.

View Record about users interacting
with the application interface
including opening the app, clicking
on pages or content, or searching.

Search Use of in-app search functions.

View pages Records of a user viewing or clicking on pages or content.

App open Records of a user opening or accessing the application, differ-
ent from authentication as the user may be pre-authenticated
when they access or open an application.

Data Export Data export requests or receipt.

Notification Records about notifications sent to the user via push, email, or text; or user interactions with these notifications.

Background
Activity

Scheduled jobs, analytics and advertising, or other activity not driven by user actions.

Other Any remaining records of unknown or indecipherable meaning.

Temporal Codes

Event Log entries corresponding to some historical, individual action or event, such as API calls or logins.

State Metadata about ahistoric or persistent properties of an account or interface, such as biographical information or
a list of enabled/disabled settings.

Figure 8: Codebook from our qualitative content analysis in Section 4. Note that each set of Level 2 codes had an additional “Other” category
for data elements that did not clearly adhere to our codes, but were not prevalent enough to justify an additional category.
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